

Introduction to Commodity Plastics

Polymers & Plastics by Dr. Yatish B. Vasudeo

Innovation Consultant

Polymers & Plastics

- What is Polymer ?
- Term "Polymer" is derived from Greek words "Polus" and "Meros" meaning many parts
- "Polymer" : high molecular weight compound (molecule) formed by the repetition of
- small, simple chemical units called monomers
- "Polymerization": Process of generating entire molecular structure through repetition of one or more monomer units using Ziegler-Natta catalyst

- Organic in nature (based on carbon)
- High molecular weight (>25000)
- Plastic (adjective) = ability to change shape, to be deformed sometime during the manufacturing process

Attributes of a plastics/polymeric material

- Molecular weight (MW) and its distribution (MWD)...along with branching contributes to polymer architecture
- Percent crystallinity (% cxn) ranging from 0% (totally amorphous) to upwards to 85%
- Glass transition temperature, Tg

Processing considerations

- In general, it can be stated that the higher the molecular weight, the better the properties...
- BUT...at the expense of processability
- As MW increases, the melting temperature (Tm) and viscosity (n, n*) increase
- With increasing percent of crystallinity, the processing temperature increases (Only crystalline materials have a Tm)
- As MWD broadens and short-chain branching (SCB) increases, the processing temperature and viscosity decrease

Typical Physical Properties of "Generic" Plastics

Soft Polymers Polyethylene EVA Ionomers Silicones ... etc.

Semi Rigid Flexible PVC HDPE PP

TPUs etc

Rigid Polymers PVC Polystyrene Acrylics Nylons etc

Typical properties:

Property	Soft	Semi- rigid	Rigid
Specific Gravity	<1.0	1.1	>1.2
Tensile Strength, (Mpa)	210	350	620
Elongation, %	300+	100	2 to 25
Tensile Modulus, (Mpa)	700	3500 t0 10,500	25,000
Impact Resistance	No Break	Varies	Varies

Typical properties:

Property	Soft	Semi- rigid	Rigid
Creep Resistance	Poor	Poor- OK	Good
Hardness	Soft	Semi-soft	Hard
Clarity	Varies	Varies	Varies
Chemical resistance	Varies	Varies	Varies
Burning Behavior	Varies	Varies	Varies
Price	Varies	Varies	Varies

Typical Upper Use Temperatures of Selected Plastics

- Low temperature performance:
- LDPE, LLDPE, VLDPE, ULDPE
- Ionomers
- EVA
- CPE
- Flexible vinyls (function of the amount and type of plasticizer(s)
- Elastomers: nitrile, silicones, urethanes

Typical Upper Use Temperatures of Selected Plastics

Medium temperature performance:

- PVC
- Polyesters (PET & PBT)
- Styrenics
- Acrylics
- ABS
- Modified PPE
- SMA and SAN copolymers
- Cellulosics
- Some neat polyamides

Typical Upper Use Temperatures of Selected Plastics

High temperature performance:

Neat resins:

• Engineering types: PC, PSO, PAY, PEI, PES, PAS, LCPs, PPS, PEI, some alloys

Reinforced resins:

- Commodity: gr-PP, gr-PS, gr-SMA, gr-SAN
- Engineering: PBT, PET, PTT, PC, PSO, polyamides, acetals, etc

World Polymer Demand-2012

Consumption by end use sector

GCC Plastics Processing Industry

- The GCC has experienced a period of rapid growth in recent years, propelling itself from its original status as an oil and gas producer, to become a leading olefins and polymers producer.
- Polymer production capacity has soared during the past five years increasing from 8.8 million tons in 2007 to 19.9 million tons in 2012, along with consumption which has risen on average by ten percent per year from 2.8 million tons in 2007 to 4.5 million tons in 2012.
- This level of growth is forecast to continue over the next five years at annual rate of around eight percent.

GCC Plastics Consumption

GCC Sectorial Consumption

Thank You

..... To Polyethylene

Dr Y B Vasudeo 2013